Pain Is A Mystery, But How Do You Solve It?

Puzzle

It is easy to think of pain as a simple puzzle. Find the missing pieces, put it all together in the right order and then voila, you feel better.

Unfortunately, as much as we’d like things to be this simple, it’s not the case, and pain is more like a mystery.

Allow me to let Malcolm Gladwell explain (1):

The national-security expert Gregory Treverton has famously made a distinction between puzzles and mysteries. Osama bin Laden’s whereabouts are a puzzle. We can’t find him because we don’t have enough information. The key to the puzzle will probably come from someone close to bin Laden, and until we can find that source bin Laden will remain at large.

The problem of what would happen in Iraq after the toppling of Saddam Hussein was, by contrast, a mystery. It wasn’t a question that had a simple, factual answer. Mysteries require judgments and the assessment of uncertainty, and the hard part is not that we have too little information but that we have too much. – Malcolm Gladwell

Although it seems like there a new discoveries about pain being published almost monthly. So much about is still unknown.

And, because pain is invisible and has many unconscious components, we simply cannot know why you, or any individual is experiencing pain at a particular moment.

The Case Against Diagnostic Imaging

You would think that being able to visualise the structure of the body would be helpful to clinicians treating pain.

It turns out that this isn’t quite the case.

Firstly, there is a large, and growing, body of research that shows there is very poor correlation between the structure of our bodies and symptoms of pain.

From disc injuries (2) to degeneration (3)  and even partial or full thickness tendon tears (4), most of us are walking around with structural “damage” that would show up on diagnostic imaging (X-ray, CT, MRI etc).

Secondly, and most interesting to me, is due to the fact that the interpretation and reporting on diagnostic imaging varies wildly.

In a recent study on MRI reporting and interpretation (5), a woman with low back pain and neurological referral was sent for an MRI at 10 different locations. The results reported 49 total findings, with not one interpretive finding consistent across all 10, and only 1 finding consistent across 9 of the 10 reports.

This means:

  1. MRIs require skill to interpret, and not all radiologists are equally skilled, thus, it matters where you get an MRI done.
  2. Radiologists working in isolation from the patient, are assessing an image, not a person, and have to make a lot of assumptions, even with a comprehensive history.

What About Physical Assessments?

Physical assessments are a necessity for clinicians, but which assessments are valuable, and which just add confusion?

We can break physical assessment into 3 components:

  1. Vital signs like pulse, blood pressure and breathing
  2. Neuro-orthopaedic examinations that are designed to rule in or rule out specific pathology or conditions
  3. Functional assessment designed to determine an individual’s movement competency and capacity

It is the third area which is the most “grey”.

This is because human movement, being an emergent property, is not an easy thing to classify (6).

We can define good and poor movement, but again the definitions are somewhat arbitrary, and their are many exceptions who fall outside those defined ranges who do not have an consequences (injury, pain etc).

This isn’t to say their isn’t such thing as good movement, bad movement or better movement, but only that it is person specific.

So if we use a movement assessment to gain insight to a person’s movement at that moment in time, in those conditions (in the clinic for example)then we can look for a movements that can be better.

If we identify movement that could be better, we can challenge to brain to improve movement, with a variety of techniques.

Even Histories Can Be Misleading

A good clinician will help someone in pain by creating the right context, or environment for them to heal.

To do this, a good clinician will know what they need to know, and more importantly, what they don’t.

By focusing only on the important, relevant, information, a good clinician minimises the chance of nocebo, and maximises the chances for recovery.

What exactly then does a good clinician need to know?

Is this pain dangerous?

When consulting with a patient, first, we want to rule out risk – some musculoskeletal pain can be caused by serious pathological conditions that need medical intervention. We have to rule these out first, and when in doubt, err on the side of conservative.

As a caveat to the above section on imaging, an “unnecessary” X-ray is a small price to pay if the alternative is missing an early cancer diagnosis. This does not mean imaging should be routine!

Is this pain affected by movement or position?

Mechanical pain is characterised by changes related to movement or position. If the answer to this question is yes, this rules in mechanical pain as a diagnosis. This does not yet rule out other origins of pain.

We can follow this up with more exploratory questions around which movement or positions feel good and which don’t.

Combined with the assessment findings, this will give us some more insight into how to proceed with treatment.

What is your current autonomic state?

Your autonomic state says a lot about you.

If you are wound up tightly – in a sympathetic or stressed state, characterised by elevated heart rate and blood pressure, shallow breathing and decreased blood flow to the periphery of the body (including the skin) – then it will be hard to resolve your pain until you enter a more balanced autonomic tone.

What are the barriers to recovery?

These are often implied, and a good clinician will be able to identify these as much from what a patient doesn’t say, as what they do.

Factors that can affect recovery include:

  • Age
  • Disease
  • Nutrition
  • Thoughts
  • Comorbid conditions – anxiety, depression, high blood pressure etc
  • Medications
  • Family and friends
  • Employment, or lack thereof

As always, it’s not simple, and it’s definitely not linear.

We are, after all, dealing with people – you know, those confusing, irrational beings who like to “go out”, but not for too long, because then they have to “go home” (Seinfeld reference, video below).

The Downside of Irrationality

Human beings are irrational. This is a fact.

Being irrational has positives, the most obvious being love.

Love is a fantastic human emotion that is completely irrational. If we were completely rational beings, then we wouldn’t spend so many of our resources chasing love, or any feeling for that matter.

But, this is exactly why too much information does not help us treat pain.

Too much information can lead us to make false assumptions and draw erroneous conclusions.

This doesn’t help patients seeking help for pain at all.

Pain has very tenuous links to tissue damage, body structure, posture, strength, symmetry and stability. (8,9)

Investigating these to a high level, and then describing pain as a result of these findings is not only inaccurate, but also harmful. (9, 10)

Every time someone is told their pain is the result of the above findings, a link is made in their brain. This is called a neurotag. Think of it like a storage file in the brain. (11, 12)

If a clinician, family member or friend tells someone with low back pain they lack “core stability”, then this is added to the low back pain neurotag.

Then, because of the way our brains function, when we have existing knowledge, we look for examples to confirm this knowledge – this is called confirmation bias.

So the person with low back pain, who has been told their pain is caused by a lack of core stability, finds “evidence” to support this.

If their back hurts when they lift something, they blame their lack of core stability. If their back hurts after activity, it’s core stability’s fault.

They forget to focus on the times that they lifted something without pain, or that activity didn’t hurt.

This is just one simple example. There are many others like it.

Conclusions

Mysteries are interesting to us as humans – as long as we get closure and the mystery is solved in the end. This is the basis of the “open loop”*  TV shows, movies and books use to keep their audiences engaged.

Unfortunately life is not like a movie. We don’t always get a neat and tidy closure.**

The challenge facing any clinician, when we treat people in pain, is to focus only the important and relevant information, and to educate patients on why this is so.

The even bigger challenge, is helping patients face the reality that the mystery of pain can’t always be solved, no matter how much (or little) information you have.

 

*An open loop is used by writers whereby earlier in the story they introduce something, but don’t address it immediately, in order to keep your attention, because you want to find out what happens next.

**Except not all movies or TV shows have closure. One of the greatest TV shows of all time, The Sopranos, has a famous ending that didn’t give it’s audience the closer they were hoping for.

 

Nick Efthimiou Osteopath

 

This blog post was written by Dr Nick Efthimiou (Osteopath), founder of Integrative Osteopathy.

This blog post is meant as an educational tool only. It is not a replacement for medical advice from a qualified and registered health professional.

 

 



 

 

 

References

(1) Enron’s Open Secrets

(2) MRI findings of lumbar spine in people without back pain

(3) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation

(4) MRI findings in throwing shoulders: abnormalities in professional handball players

(5) Variability in diagnostic error rates of 10 MRI centers performing lumbar spine MRI examinations on the same patient within a 3-week period

(6) Metastability and emergent performance of dynamic interceptive actions

(7) The fall of the postural-structural-biomechanical model in manual and physical therapies: exemplified by lower back pain

(8) Different contexts, different pains, different experiences

(9) Nocebo hyperalgesia and the startle response

(10) Context as a drug: some consequences of placebo research for primary care

(11) Pain really is in the mind, but not in the way you think

(12) Reinstatement of pain-related brain activation during the recognition of neutral images previously paired with nociceptive stimuli